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Abstract 

Experimental electrostatic potential derived from X-ray 
diffraction data was used as a given physical property 
for the determination of atomic moments. The electro- 
static potential is fitted against Buckingham moments 
expansion up to octupolar level. The estimation of the 
contribution of the aspherical part of the density to the 
electrostatic potential necessitates a judicious choice of 
the points grid around the system in order to get stability 
and reliability of the results. The net charges obtained 
by the fit to the electrostatic potential on a test crystal of 
the pseudo-peptide N-acetyl-c~,/3-dehydrophenylalanine 
methylamide are close to those derived from the 
electron-density refinements. The higher moments are 
related to the electron-density multipolar parameters. 

1. Introduction 

In molecular modelling and molecular dynamic simu- 
lations, the charge-density distribution cannot be used 
directly from theory or experiment. It should be param- 
etrized: in a first approximation, it can be represented by 
a simple superposition of net charges centred at atomic 
sites. This representation has two advantages: firstly, it 
allows the electrostatic interaction of the molecule to 
be described easily; secondly, these net atomic charges 
determined on small molecules are supposed to be 
intrinsic for atoms in some fragments and then could 
be transferable to similar fragments of larger systems 
for which the density distribution is nearly impossible 
to reach with accuracy. 

The determination of net atomic charges from the 
molecular electron density necessitates a space parti- 
tioning, for example stockholder partitioning (Hirsh- 
feld, 1977), discrete boundary (Moss & Coppens, 1981) 
or topological analysis of Bader (Bader & Nguyen- 
Dand, 1981; Bader, 1990) to define the real occupied 
atomic volume in the whole molecule. These charges 
are obtained by direct integration of the electron density 
on the atomic volumes. However, this method suffers 
from serious numerical difficulties especially on the 
volume boundaries and also because the charge density 
of outer atoms extends formally to infinity. All methods 

define also very different atomic volumes and different 
integrated charges. 

The second and more convenient approach to obtain 
the charges is based on fitting to a basic physical 
property like the electrostatic potential or electric field 
derived either from quantum-mechanical calculations 
(Momany, 1978; Cox & Williams, 1981; Chirlian & 
Francl, 1987) or from the experiment. The point charges 
positioned on the nuclei can reproduce accurately the 
electrostatic potential when it is generated by the spher- 
ical part of the electron density or from a e; refinement 
(Ghermani, Bouhmaida & Lecomte, 1993, paper I) or if 
the potential is calculated far from the charge distribu- 
tion. This latter case is obviously not interesting since 
the interaction between molecules occurs at a distance 
corresponding to the molecular van der Waals surface. 
Moreover, the introduction of the contribution of the 
aspherical part of the electron density is more than 
necessary in modelling the electrostatic potential mainly 
for organic compounds displaying s, p bonds, lone pairs 
and hydrogen bridges. When this modelling is based on a 
point-charge model, sophisticated observation grid-point 
sampling (Spackman, 1996) or dipole constraint (when 
experimental values are available) (Woods, Khalil, Pell, 
Moffat & Smith, 1990) must be used in the fitting pro- 
cedure in order to get reliable and non-conformational- 
dependent charge density (Bouhmaida, 1993; Ghermani, 
Bouhmaida & Lecomte, 1993). Furthermore, once the 
grid sampling is adequate, in the theoretical case these 
charges are strictly dependent upon the basis sets used in 
the calculation of the electrostatic potential. As reported 
by Woods et al. (1990), for methanol (CH3OH), the 
atomic charge on the O atom varies from -0 .482e  
for the STO-3G basis set to -0 .682e  for 6-31G** 
wavefunction potential. This latter value was also found 
by Spackman (1996) with his geodesic sampling points 
using 6-31G** wavefunction; the atomic charges of 
the methyl group, which are more sensitive to the 
polarization effect, are, however, different from those 
of Woods et al. (1990). 

Another way to improve the fit of the electrostatic 
potential by point charges consists of adding extra- 
nucleus centres, for example charges in the middle of 
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the bonds in amino acid side chains (Chipot, Angyan, 
Maigret & Sheraga, 1993). The number of centres will 
obviously increase with the size of the molecule and the 
physical significance of these charges will be doubtful. In 
fact, this multicentring representation of the electrostatic 
potential is mathematically equivalent to a multipolar 
expansion on atomic sites. Faerman & Price (1990) have 
shown that this latter representation yields more accurate 
electrostatic potential at all distances from the atoms 
and a better estimation of the interaction energy than 
a point-charge model. 

On the other hand, our experimental approach is based 
on the accurate electron density derived from high- 
resolution X-ray diffraction data. In the refinement of 
the electron density, the molecular electron distribution 
is considered as a superposition of multipolar pseudo- 
atoms. Since the diffraction data are due to interacting 
molecules in the crystal, the multipolar density param- 
eters are supposed to contain much more information 
than in the isolated molecule, especially for features like 
hydrogen bonds. At the end of an experimental electron- 
density study, the electrostatic potential can be calcu- 
lated analytically with respect to the multipolar density 
parameters (Ghermani, Lecomte & Bouhmaida, 1993). 
In paper I, we have obtained reliable charges by fitting 
the electrostatic potential calculated from the spherical 
density contribution using the Householder method (Las- 
caux & Theodor, 1986). The charges obtained were very 
close to those obtained from X-ray analysis and were 
not found to be conformation dependent. Other studies 
on the determination of point charges are those of Su & 
Coppens (1993) and Klooster & Craven (1992). We have 
also shown in paper I that the determination of charges 
from the total electrostatic potential, i.e. including the 
aspherical part of the electron density, was not possible 
with good accuracy because of the difficulty in the 
representation of this asphericity by atomic site point 
charges. The aim of this second paper is to show that 
chemically realistic atomic moments can be determined 
from a least-squares fit to the total electrostatic potential 
(in this paper, experimental potential). These moments 
will also be compared with the charge-density multipolar 
parameters. 

2. Methodo logy  

Our experimental X-ray diffraction data are refined using 
a multipolar model (Hansen & Coppens, 1978) in which 
the electron density of each atom in the molecule is 
given by 

,o(r) = ±ocorc(r) + Pval d3,oval(~r) 

+ ~ ~"3Rnz(~"r) Y~PlmYlm+(O, qO), 
l m 

(1) 

where '&ore and 'oval are, respectively, Hartree-Fock 
spherical core and valence densities, 'oval is normalized 

to 1 e; then the refined valence population parameter Pva, 
gives the net atomic charge q with respect to the number 
of electrons N,,al in the free-atom valence orbitals, q = 
Nval-  Pval" The Ylm+'S are spherical harmonic angular 
functions of order l in real form and Rnl(r) are Slater- 
type radial functions 

R~t(r ) = Nlr "l exp ( - ( r ) .  (2) 

N l is the normalization factor, nl and ( are parameters 
depending on the atomic type. Ptm are the multipolar 
population parameters and n,' and ~;" are contrac- 
tion-expansion coefficients for spherical and multipolar 
valence densities, respectively. The molecular density 
is considered as the superposition of the pseudo- 
atomic densities. It is then possible, from the analytical 
expression of the electron density, to calculate the atomic 
moments with respect to the Hansen-Coppens model 
parameters. Many studies on dipole moments derived 
from experimental X-ray diffraction were done [see 
for example those of Coppens, Guru Row, Leung, 
Stevens, Becker & Yang (1979) or more recently 
the study of Espinosa, Lecomte, Molins, Veintemillas, 
Cousson & Paulus (1996)]; the results are comparable 
with other experiment or quantum-mechanical results. 
Moss & Feil (1981) have also calculated higher atomic 
moments directly from the Hirshfeld charge-density 
model (Hirshfeld, 1971). Our approach is to consider the 
electrostatic potential as a given physical property that 
can be attained from experiment or calculated (instead 
of the charge density) to derive atomic moments; the 
electrostatic potential compares better than electron 
density from one method to another, mainly outside 
the charge distribution (van der Waals envelope). This 
was confirmed recently by the comparison between 
ab initio SCF and experimental electrostatic potential 
in the hydrogen-bond region of a nonlinear optical 
(NLO) material L-arginine phosphate monohydrate 
(LAP) (Espinosa, Lecomte, Ghermani et al., 1996). 
Fitting atomic moments against electrostatic potential 
seems therefore to be more suitable to compare the 
results from theoretical or experimental strategies. 

We have shown that the molecular electrostatic po- 
tential (Ghermani, Lecomte & Bouhmaida, 1993) is the 
sum of the contributions of each atom j at Rj: 

V(r) = ~ Vjcore(r ) + Vj val(r ) + AVj(r) 
J 

with 

,Oj core ( rl ) g [ d3r ', Vjc°rc(r) - I r -  Rjl d [ r -  Rj - r'[ 

f 'Oj val ( ~  r., ) d3r , 
Vj va~(r) = - eva~j~j3 I t _  Rj _ r,i (3) 
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and 

AVj(r) = - - 4 7 r ~ - ~ [ t ~ : t P j l m / ( 2 1  + 1)] 
lm 

/ /  t t l+l 1 × [1/t~j I r - R j [  t+ )] 

t t  ,~j Ir-Rjl 
• t t l l _  II × f ~+21~j.,It) dt + ~j ~ . -  

0 

x f [Rjnt(t)dt/t ~-11 y..±(O',~'). (4) 
,~:'lr-Rjl 

In our previous study (paper I), we have shown that 
the electrostatic potential calculated from the spherical 
part of the charge density related to Z, Pcore and Pval could 
be fitted beyond a radius Ir- RImi n = 2/~ by point 
charges on the nuclear positions. This point-charge fit- 
ting was performed on several thousands of observation 
points equally distributed on a spherical grid around each 
atom, the minimum distance Ir- Rlmi n being 2 ~.  The 
values obtained are close to net atomic charges deduced 
from P v a l  and are not conformation dependent. We also 
understood, in this paper, that increasing the number 
of observation points does not change significantly the 
results. 

The fit of the contribution, to the electrostatic po- 
tential, of the aspherical part of the density by q/R 
is difficult since the multipolar functions could not 
be described by a single point charge on each nu- 
cleus and it is necessary at least to add supplemen- 
tary centres or dipoles on hydrogen atoms (Bouhmaida, 
1993). Hence, the fit with point charges of the to- 
tal potential gives a statistical residual factor R% de- 

: ~"~Not,~ V2 ' )  I/2 fined by R% (~--:Noh~ I V o b s i _  Vcalcil2 / z..~i " obsi] 
greater than 30% when this factor is less than 1% for the 
spherical density contribution. Therefore, in this study, 
the fit of the experimental electrostatic potential was 
then carried out using the Buckingham (1959) atomic 
moments expansion up to octupolar level (l = 3) given 
by 

V(r) = E ~_,(ajtm/I r -  RjIt+1)Ytm+(O', ~'), (5) 
j lrn 

where Qjt,,, represents the m moment of order l of the 
atom j m the molecule, Ir- Rjl being the distance 
between the observation point at r and the atom j at Rj. 

3. Sampling scheme 
3.1. Choice of the minimum distance 

The fit to the aspherical multipolar part of the electro- 
static potential requires a careful study of the sampling 
observation points since these multipolar functions con- 
tribute mainly in particular directions of the space. In 
the interatomic region, the atomic moments Qjtm depend 
upon the distance as shown by Vign6-Maeder & Clav6rie 
(1988). Furthermore, the distance must be greater than 

2/~ because at about 2 ]k from the atoms the polarization 
and exchange effects become negligeable. On the other 
hand, the magnitude of the higher multipolar functions 
are important in the region close to the atoms (d < 1/~) 
compared with the contribution of the monopole. Then 
we must find a suitable limit of the distance from each 
atom Ir - Rlmin to be used in the fit. For this, consider 
the ratio of the radial parts in the potential between (4) 
and (5), namely the function 

-Ir-RjI t] 
.f tl+2Rj.l(t) d 
0 

+ I r - R j I  2t+' f Rj, t(t)dt/t l-l , (6) 
Ir-Rjl 

which is represented as a function of r in Fig. 1 for 
an O atom with ~ = 4.5, ~ " =  1, l -  2 and n l -  2. 
Fig. 1 shows that this function becomes constant at an 
average distance of 2 A,; this distance was then taken as 
the minimal value in the fit. The curves obtained for C, 
N and H atoms show similar features. 

3.2. Choice of the sampling scheme 
Consider a fragment of four atoms as shown in Fig. 

2, which displays the sampling observation spheres. The 
observation points are chosen equidistant on spheres 
centred on the nuclear positions. In the previous study, 
the points were sampled only on the external van der 
Waals-like envelop (heavy line in Fig. 2). This choice 
gives very small weight to the inner atoms in the 
molecule whose charges and moments may not be well 
determined (ill conditioning problem); therefore, the 
sampling points are chosen on spheres centred on all 
the atoms (radius = 2/~) with the condition that the 
potential at a given point M is calculated and fitted 
with only the contribution of atoms at [r - Rjl > 2/~. 
For illustration, the potential at point M is calculated 

0.10 

0.08 

0.06 

0.04 

0.02 

0.00 
0 2 4 6 8 10 

r (,~,) 

Fig. 1. Ratio of the radial part of the electrostatic potential [formula 
(6)] for an O atom as a function of the distance r to the atomic 
centre. 
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and fitted without atom J contribution ( J r -  R[ < 2 ~) 
and V(M) = V I + V K + V L, where I, K and L 1relate to 
the neighbouring atoms. Consequently, on the sphere 
around a given atom, there are different sectors where the 
contributors (atoms) are not the same. With this potential 
rejection criteria, we have almost the same number of 
sampling points for each atom in the molecule. The 
fit of the experimental electrostatic potential using the 
Buckingham atomic moments expansion [formula (5)] 
was added in our Fortran program ELECTROS (Gher- 
mani, Bouhmaida & Lecomte, 1992), which is available 
on request. In order to avoid ill conditioned least- 
squares matrices, the Householder resolution method 
(Lascaux & Theodor, 1986) described in paper I was 
also applied in the determination of the atomic moments. 
In order to take into account the chemical and the 
local symmetry of each atom in the molecule, the 
calculation is performed in atomic local frames as is 
usually done in the refinement of the electron density 
in the Hansen-Coppens (1978) model. This procedure 
also permits one to describe the electrostatic potential 
only by significant moments of the atoms imposed by 
symmetry or pseudo-symmetry of the local atomic sites. 

4. Application to N-acetyl-c~,/3-dehydro- 
phenylalanine methylamide 

In order to test the improvement of the fit of the total 
electrostatic potential using the introduction of higher 
moments on the atoms, the same pseudo-peptide mol- 

ecule N-acetyl-a,/3-dehydrophenylalanine methylamide 
(hereafter AcA) (Souhassou et al., 1992) was chosen as 
in paper I. Fig. 3 shows the ORTEP view of AcA. Dur- 
ing the least-squares Molly refinement (Souhassou et al., 
1992), we imposed chemical and symmetry constraints 
o n  Pval  and Plm parameters [see formula (1)] like C6 = 
C7 = C8 = C9 = C10 or Hl12  = H212 = H312, which 
are, de facto,  included in our experimental potential. 
We will show that our algorithm and sampling points' 
choice will recover exactly the constrained charges and 
moments even though we did not impose any constraint 
in the fit. This fit was performed with one shell of 
observation points of radius equal to 2/~ around the 
atoms in the molecular crystalline conformation. We 
have checked that using more than one shell did not 
change the results. This is expected because homothetic 
shells do not change the main directions and thus the 
contributions to the moments. Table 1 gives the obtained 
charges and moments up to order l = 3 (octupoles) for 
C, O and N atoms and l = 1 (dipoles) for H atoms. The 
statistical R~: value is very low (R% = 3.8%, Nob.~ -- 
t2 210, Npa r = 284), reflecting the excellent quality of 
the fit. Fig. 4 displays the experimental potential (a) and 
the electrostatic potential calculated with the obtained 
atomic moments (b). The difference of these maps does 
not exceed 0.05 e A-~ outside an atomic radius of 1/~. 

4.1. Net  atomic charges 

As shown in Table 1, the net atomic charges are 
equal within 0.01 e to those given by Nva t - P,,al [for- 

contribution of I,J,K,L 
contribution of I,L,K or L,K,J or I,J,L 

. . . . . . . . . . . . .  contribution of K,L or I,K or J,K 
contribution of K,J or I,J or I,K 

. . . . . .  contribution of I or J or K 

Fig. 2. Example  of  the observat ion points sampl ing grid. 
Fig. 3. ORTEP view of  N-ace ty l -o ,A-dehydrophenyla lan ine  methyl-  

amide  (At  J ) .  
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mula (1)]. It is worth noting that, although we did not 
use any electroneutrality constraint, the total molecular 
charge remains zero within 0.01 e. This result could be 
attributed to the good choice of the sampling points, 
which takes into account in the same way all the atoms 
of the molecule whatever their positions (inner or outer 
atoms). This was not exactly the case in paper I, where 
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(b) 
Fig. 4. Electrostatic potential in AcJ in the plane of a peptide bond. 

Contours are 0.05 e /~ - t  zero and negative contours are dashed: 
(a) experimental electrostatic potential; (b) electrostatic potential 
calculated with the full set of fitted atomic moments. 

we found a deviation of approximately 0.2 e from the 
neutrality for this 30-atom molecule. Furthermore, the 
net charges obtained in this study are very close to 
those of the previous paper, the maximal deviation being 
0.06 e for the O atoms. They respect symmetry and 
chemical properties - i.e. equivalent atoms have equal 
charges without constraints. Also, the introduction of the 
aspherical part does not change the charges. Inspection 
of the higher atomic moments shows also directly the 
chemically equivalent atoms. All these remarks show 
the stability in the Householder resolution. 

4.2. Higher atomic moments 

For the chemically equivalent and constrained atoms 
in the multipolar density refinements, the obtained 
atomic moments in their local atomic frames are almost 
equal; see, for example, the phenyl C atoms (C6, C7, 
C8, C9, C10) and their corresponding H atoms (Table 1). 
Furthermore, in the phenyl group, for instance, only the 
moments corresponding to dipole (x), quadrupole (3z 2 -  
1) and octupole (.r ~ - 3 x y  2) have significant values 
in comparison with the other moments: without any 
constraint in the fit, these latter results are in accordance 
with the local atomic symmetry. Hence, the fit of 
the electrostatic potential could be performed with a 
restricted number of moments: it was therefore done 
with only the moments that gave a minimal contribution 
of 0.02 e A,- l to V(r) at a distance of 2/~ from the atomic 
centres. This reduced the number of parameters from 
284 to 132. The statistical R% factor is 4.3% compared 
with 3.8% in the unconstrained fit. Table 2 gives the 
results obtained when the total potential is fitted with 
this restricted set of parameters. They agree almost 
exactly with the statistically significant moments of the 
full parameters fit, the highest deviation being 0.04 e A3 
for the octupole (x 3 - 3xy 2) of C1. This observation 
also enhances the robustness of the method, showing 
that the main components are very well determined, 
not depending on the number of parameters. The 
electrostatic potential map calculated with the restricted 
set of moments is quasi-exactly superposable on the map 
obtained with the full set (see supplementary material).* 

5. Relationship between the atomic moments 
and the multipole density parameters 

In the experimental approach, the molecular electron 
density is projected onto pseudo-atom densities de- 
scribed by products of radial terms with spherical har- 
monic functions in real form. The Plm parameters of 
each of these pseudo-atoms contain information related 
to the bonding and the interaction between molecules 

* A figure showing the electrostatic potential in Ac.__X calculated with 
the reduced set of fitted atomic moments has been deposited with 
the IUCr. Copies may be obtained through The Managing Editor, 
International Union of Crystallography, 5 Abbey Square, Chester CH 1 
2HU, England (Reference: AU0091). 
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Table 1. Atomic moments (in e A l, I is the multipolar level) obtained in the fit to experimental electrostatic potential 
of AcA with the full set of parameters 

Spherical harmonics functions are given in their Cartesian form related to x, y, z. The local axis frame is given in Souhassou et al. (1992). 

Charge 
Atom Pval (e) X Y Z X 2_ y2 XY XZ YZ 3Z 2-1 

C1 4.25 -0 .24  0.24 - 0 .20  -0 .01 0.37 0.12 0.01 -0 .03  -0 . 24  -0 .97  
C2 3.87 0.14 - 0 .49  -0 .28  0.17 -0 .28  0.07 0.05 -0 . 07  0.90 -1 .44  
C3 4.10 -0 .09  - 0 .64  -0 .35  0.24 -0 .35  0.14 0.07 0.04 0.35 -0 .96  
C4 3.88 0.13 -0 .03  -0 .18  -0 .21 -0 .02  0.02 0.02 -0 .07  0.45 -1 .19  
C5 4.02 -0 .01 0.10 -0 .02  -0 .02  0.11 -0.01 -0 .03  0.04 0.67 1.21 
C6 4.10 -0 .09  -0 .12  -0 .02  0.00 0.01 0.00 0.01 -0 .01 0.54 1.07 
C7 4.10 -0 .09  -0 .11 0.00 0.00 0.04 0.01 -0 .03  -0 .02  0.54 1.10 
C8 4.10 -0 .09  -0 .13  0.01 0.01 0.03 0.02 0.03 -0 .03  0.55 1.10 
C9 4.10 -0 .09  - 0 .12  0.00 0.00 0.01 -0 .02  0.00 -0 .01  0.58 1.06 
C10 4.10 -0 .09  -0 .12  0.00 0.00 -0 .02  0.01 -0 .01 0.00 0.60 1.10 
C l l  4.10 -0 .09  -0 .35  0.22 0.01 -0 .22  0.06 0.07 0.04 0.86 -1 .52  
C12 4.32 -0 .31 0.68 0.46 -0 .08  0.24 -0 .03  -0 .09  -0 .12  -0 . 29  -1 .64  
O1 6.37 -0 .38  0.26 -0 .13  -0 .15  0.01 -0 .07  0.03 0.04 0.07 -0 .03  
02  6.44 -0 .44  0.22 -0 .02  -0 .01 0.05 -0 .03  0.00 0.03 0.10 0.04 
N1 5.31 -0 .30  - 0 . 1 9  -0 .23  0.08 0.00 0.04 -0 .03  0.01 0.06 -0 .58  
N2 5.08 -0 .08  0.02 - 0 .29  0.09 0.08 0.06 -0 .02  0.08 0.03 -0 .51 
H101 0.87 0 . 1 3 - 0 . 6 2  . . . . . . . .  
H201 0.87 0 . 1 3 - 0 . 6 0  . . . . . . . .  
H301 0.87 0 . 1 3 - 0 . 6 3  . . . . . . . .  
H104 0.84 0 . 1 5 - 0 . 5 2  . . . . . . . .  
H106 0.84 0 . 1 5 - 0 . 5 2  . . . . . . . .  
H107 0.84 0 . 1 5 - 0 . 5 1  . . . . . . . .  
H108 0.84 0 . 1 5 - 0 . 5 1  . . . . . . . .  
HI09 0.84 0 . 1 5 - 0 . 5 3  . . . . . . .  
H l l 0  0.84 0 . 1 5 - 0 . 5 2  . . . . . . .  
H l l 2  0.87 0 . 1 3 - 0 . 6 3  . . . . . . .  
H212 0.87 0 . 1 3 - 0 . 6 3  . . . . . . .  
H312 0.87 0 . 1 3 - 0 . 5 8  . . . . . . .  
H01 0.75 0.24 -0 .52  . . . . . . .  
H02 0.76 0.23 - 0 .74  . . . . . . .  

X 3 _ ZX 2 _ 
3Xy2 3X 2 y _  y3 Zy2 

0.27 -0 .17  
0.04 -0 .02  

-0 . 09  0.03 
0.09 0.03 
0.04 0.00 
0.04 -0 .04  

-0.01 -0 .03  
0.02 -0.01 
0.04 0.00 

-0 .02  0.03 
0.08 -0.01 

-0 .30  0.17 
-0 .05  0.02 
-0 .02  -0 .03  
-0 .03  -0.01 

0.06 -0 .02  

B 

D 

m 

_ _  E _ _  

_ _  D _ _  

_ _  B _ _  

B _ _  _ _  

( 5 2 2 -  ( 5 2 2 -  5 ( 2 2 -  

XIrZ l)X 1)Y 3)Z 

0.10 1.08 0.71 -0 .24  
0.04 0.17 0.04 -0 .04  

-0 .03  -0 .14  -0 .15  0.16 
0.16 -0 .23  -0 . 14  -0 .06  
0.08 -0 .15  -0 .02  0.05 

-0 .02  -0 .07  0.04 0.03 
-0.01 -0.01 0.01 0.03 

0.01 -0 .07  0.01 0.00 
0.03 -0 .03  0.01 0.02 
0.00 -0 .04  0.00 0.02 
0.14 0.03 -0 .06  0.06 
0.20 1.44 -0 .27  -0 .12  
0.00 -0 .03  0.05 0.00 

-0 .03  0.00 -0.01 0.02 
-0 .16  -0 .10  0.00 0.01 
-0 .03  0.06 0.03 -0 .09  

in the solid state. Now, if we take any pseudo-atom and 
compare (4) and (5), it is obvious that at a great distance 
from the nucleus site, i.e. outside the atomic density 
distribution, Plm will be proportional to  Qlm as pointed 
out by Vign6-Maeder & Clav6rie (1988) for Qlm(R) and 
Qlm(CX~). In this study, we calculate directly the atomic 
moments with respect to the molecular electrostatic 
potential, which is a function of the total electron density 
everywhere in the space. Then the obtained atomic 
m o m e n t s  ajlm have to be compared with the multipolar 
density parameters Prim" T h e  ratios Q~lm/47rP;lm#~l(CX~) 
are listed in Table 3, where #,t(o~) is ~ the value 6f the 
first integral in (6) (the second' part converges to 0): 

Ir-Rjl 

~jl(O0) = l im  f t~+eRjnt ( t )d t .  (7)  
Ir-Rjl--.oc 0 

In practice, this integral is constant when I r - R I = 
30/~). We note that this ratio is l independent, whicJh is 
not the case for ~ r  

As shown in Table 3, these ratios are close to 1.0 
for atoms like phenyl C atoms, which are described by 
only a net charge, one dipole, one quadrupole and one 
octupole (0.9 < ratio < 1.12). The same remark holds 
for H atoms (0.8 < ratio < 1.04). For other atoms of the 

molecule, these ratios are very different from 1.0 even if 
the number of statistically significant moments is low. In 
the case of O and N atoms, the values of Qt,,, can be three 
times those of Ptm" Describing the methyl C atoms is 
more complex because they require at least 12 moments 
and the resulting ratios exceed 2.0. These preliminary 
results show that the ratios are related to the type of 
fragment the atom belongs to and its environment. We 
are currently applying the method to other molecular 
compounds and testing the transferability of atomic 
moments and their use in modelling. This study will 
complement the work of Pichon-Pesme, Lecomte & 
Lachekar (1995) concerning the transferability of the Plm 
electron-density parameters. 

6. C o n c l u s i o n s  

The total electrostatic potential including spherical and 
aspherical density contributions is fitted by atomic mo- 
ments following the Buckingham expansion up to oc- 
tupolar level for organic molecules. The new sampling 
of the observation points proposed here yields reliable 
results and permits unequivocal decorrelation between 
the net charges related to the spherical density on one 
hand and the higher atomic moments on the other hand. 
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Table 2. Atomic moments (in e/1 ~, I is the multipolar level) in the fit to experimental electrostatic potential of AcA 
with the reduced set of parameters 

C h a r g e  X 3 -  ZX 2 -  (5Z 2 -  (5Z 2 -  5(Z 2 -  
Atom Pval (e) X Y Z X 2 - y  2 X Y  XZ  I'Z 3 Z 2 - 1  3XY 2 3 X 2 y - y  3 Z Y  2 XYZ 1)X 1 )Y  3 ) Z  

C 1  4 . 2 5  - 0 . 2 4  0 . 2 6  - 0 . 2 0  - -  0 . 3 6  0 . 1 2  - -  - -  - 0 . 2 4  - 1 . 0 1  0 . 2 6  - 0 . 1 6  0 . 1 2  1.11 0 . 7 1  - 0 . 1 9  

C 2  3 . 8 7  0 . 1 4  - 0 . 4 8  - 0 . 3 0  0 . 1 7  - 0 . 3 2  - -  - -  - -  0 . 9 3  - 1 . 4 4  - -  - -  - -  0 . 2 0  - -  - -  

C 3  4 . 1 0  - 0 . 0 9  - 0 . 6 3  - 0 . 3 2  0 . 2 9  - 0 . 3 5  0 . 1 4  - -  - -  0 . 3 1  - 0 . 9 5  . . . .  0 . 1 5  - 0 . 1 2  0 . 2 1  

C 4  3 . 8 8  0 . 1 3  - -  - 0 . 1 5  - 0 . 2 5  . . . .  0 . 4 0  - 1 . 2 0  - -  - -  0 . 0 6  - 0 . 3 1  - 0 . 1 2  - -  

C 5  4 . 0 2  - 0 . 0 1  0 . 1 0  - -  - -  0 . 0 8  - -  - -  - -  0 . 6 3  1 .18  . . . .  0 . 1 9  - -  - -  

C 6  4 . 1 0  - 0 . 0 9  - 0 . 1 2  . . . . . .  0 . 5 4  1 .11 . . . . . .  

C 7  4 . 1 0  - 0 . 0 9  - 0 . 1 1  . . . . . .  0 . 5 6  1 . 1 0  . . . . . .  

C 8  4 . 1 0  - 0 . 0 9  - 0 . 1 4  . . . . . .  0 . 5 8  1 .08  . . . . . .  

C 9  4 . 1 0  - 0 . 0 9  - 0 . 1 4  . . . . . .  0 . 6 0  1 . 0 7  . . . . . .  

C I O  4 . 1 0  - 0 . 0 9  - 0 . 1 3  . . . . . .  0 . 5 9  1 .13  . . . . . .  

C l l  4 . 1 0  - 0 . 0 9  - 0 . 3 2  0 . 2 3  - -  - 0 . 1 9  - -  - -  - -  0 . 8 8  - 1 . 4 3  - -  - -  0 . 1 8  - -  - -  - -  

C 1 2  4 . 3 2  - 0 . 3 1  0 . 6 9  0 . 4 4  - -  0 . 2 4  - -  - 0 . 1 0  - -  - 0 . 2 9  - 1 . 6 4  - 0 . 2 8  0 . 1 5  0 . 2 0  1.41 - 0 . 3 2  - 0 . 0 9  

O 1  6 . 3 7  - 0 . 3 8  0 . 2 7  - 0 . 1 3  - 0 . 1 5  . . . . . . . . . . . .  

0 2  6 . 4 4  - 0 . 4 4  0 . 2 2  . . . . . .  0 . 1 0  . . . . . . .  

N 1  5 . 3 1  - 0 . 3 0  - 0 . 2 3  - 0 . 2 4  . . . . . . .  0 . 5 2  - -  - -  - 0 . 1 4  - 0 . 1 0  - -  - -  

N 2  5 . 0 8  - 0 . 0 8  - -  - 0 . 2 9  . . . . . . .  0 . 4 8  . . . . . .  0 . 1 2  

H 1 0 1  0 . 8 7  0 . 1 3 - 0 . 6 1  . . . . . . . . . . . . . .  

H 2 0 1  0 . 8 7  0 . 1 3  - 0 . 5 9  . . . . . . . . . . . . . .  

H 3 0 1  0 . 8 7  0 . 1 3 - 0 . 6 5  . . . . . . . . . . . . . .  

H 1 0 4  0 . 8 4  0 . 1 5 - 0 . 5 4  . . . . . . . . . . . . . .  

H 1 0 6  0 . 8 4  0 . 1 5 - 0 . 5 3  . . . . . . . . . . . . . .  

H 1 0 7  0 . 8 4  0 . 1 5 - 0 . 5 3  . . . . . . . . . . . . . .  

H 1 0 8  0 . 8 4  0 . 1 5 - 0 . 4 9  . . . . . . . . . . . . . .  

H 1 0 9  0 . 8 4  0 . 1 5 - 0 . 5 3  . . . . . . . . . . . . . .  

H l l 0  0 . 8 4  0 . 1 5 - 0 . 5 2  . . . . . . . . . . . . . .  

H l 1 2  0 . 8 7  0 . 1 3 - 0 . 6 2  . . . . . . . . . . . . . .  

H 2 1 2  0 . 8 7  0 . 1 2  - 0 . 6 2  . . . . . . . . . . . . . .  

H 3 1 2  0 . 8 7  0 . 1 3 - 0 . 6 1  . . . . . . . . . . . . . .  

H 0 1  0 . 7 5  0 . 2 4  - 0 . 5 0  . . . . . . . . . . . . . .  

H 0 2  0 . 7 6  0 . 2 3  - 0 . 7 1  . . . . . . . . . . . . . .  

Table 3. Ratios Qjt,./4zrPjtm ¢~jt(c~) of atom j, where Qlm are the atomic moments and Ptr. the multipolar electron 
density parameters; ~bjt (oo) is the value of the first integral in formula (6) 

A t o m  X Y Z X 2 - y  2 X Y  XZ  YZ 3 z Z - 1  X 3 - 3 X Y  2 3 X 2 y - y  3 Z X 2 - Z Y  z XY-Z ( 5 Z 2 - 1 ) X  ( 5 Z 2 - 1 ) Y  5 ( z Z - 3 ) Z  

C 1  1 .51  1 . 1 0  - -  2 . 1 6  1 . 2 0  - -  - -  2 . 0 6  1 . 3 4  - 0 . 9 6  2 . 5 0  1 . 4 6  1 .28  1 .12  2 . 1 5  

C 2  1 . 0 0  1 . 4 8  1 . 1 2  1 . 2 7  - -  - -  - -  1 .23  1 . 1 0  - -  - -  - -  1 .23  - -  - -  

C 3  1 . 1 0  0 . 9 4  1 . 2 5  1 .43  1 . 7 0  - -  - -  0 . 7 9  0 . 9 0  - -  

C 4  - -  2 . 4 7  1 .61 . . . .  0 . 8 8  1 .13  - -  

C 5  1 . 1 7  - -  - -  0 . 8 1  - -  - -  - -  1 .13  1 . 0 9  - -  

C 6  0 . 9 6  . . . . . .  0 . 9 9  1 .02  - -  

C 7  0 . 9 3  . . . . . .  1 .03  1.01 - -  

C 8  1 .11 . . . . . .  1 . 0 6  0 . 9 9  - -  

C 9  1 . 1 2  . . . . . .  1 .11 0 . 9 8  - -  

C 1 0  1 . 0 5  . . . . . .  1 . 1 0  1 . 0 4  . . . . . .  

C l l  1 .03  1 . 4 8  - -  0 . 8 5  - -  - -  - -  1 . 2 0  1.01 - -  - -  1 .71 - -  - -  - -  

C 1 2  1 . 2 4  1 . 0 8  - -  6 . 5 1  - -  1 .15  - -  1 .92  1 .38  - 1 . 2 8  0 . 5 7  1.41 1 .23  1 .95  5 . 4 7  

- -  - -  0 . 7 4  0 . 7 2  7 . 8 2  

- -  0 . 5 3  1 .28  1 . 4 4  0 . 5 9  

- -  - -  1 . 2 2  - -  - -  

O 1  1 .25  1 .71 1 . 3 8  . . . . . . . . . . . .  

0 2  1 . 3 9  . . . . . .  1 . 4 6  . . . . . . .  

N 1  1 . 4 7  1 .58  . . . . . .  1 .23  - -  - -  2 . 4 3  2 . 0 4  - -  - -  

N 2  - -  1 . 0 7  . . . . . .  1 . 3 9  . . . . .  3 . 4 3  

H 1 0 1  0 . 9 2  . . . . . . . . . . . . . .  

H 2 0 1  0 . 8 9  . . . . . . . . . . . . . .  

H 3 0 1  0 . 9 7  . . . . . . . . . . . . . .  

H 1 0 4  1 . 0 0  . . . . . . . . . . . . . .  

H 1 0 6  0 . 9 8  . . . . . . . . . . . . . .  

H 1 0 7  0 . 9 8  . . . . . . . . . . . . . .  

H 1 0 8  0 . 9 1  . . . . . . . . . . . . . .  

H 1 0 9  0 . 9 7  . . . . . . . . . . . . . .  

H 1 1 0  0 . 9 6  . . . . . . . . . . . . . .  

H 1 1 2  0 . 9 4  . . . . . . . . . . . . . .  

H 2 1 2  0 . 9 3  . . . . . . . . . . . . . .  

H 3 1 2  0 . 9 2  . . . . . . . . . . . . . .  

H 0 1  0 . 8 3  . . . . . . . . . . . . . .  

H 0 2  1 . 0 4  . . . . . . . . . . . . . .  
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The net charges are very close to those derived from 
the electron-density refinement, namely q = N v a  I - Pv.,i; 
this shows that our algorithm is very well conditioned. 
Also, charges and moments for symmetry or chemically 
equivalent atoms are almost equal. With respect to the 
local atomic symmetry, some of the moments are not 
significant and could be excluded in the fit to the total 
electrostatic potential. This is in favour of including 
only these significant parameters in molecular model- 
ling. The comparison between the observed potential 
and the potential calculated with the significant atomic 
moments only is excellent in the external region of 
the molecule. Application of the method to several 
other organic molecules with both experimental and 
theoretical potentials is in progress. 
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